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Linear instability of magnetic Taylor-Couette flow with Hall effect
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The influence of the Hall effect on the linear marginal stability of a molecular hydrodynamic Taylor-Couette
flow in the presence of an axial uniform magnetic field is considered. The Hall effect leads to the situation that
the Taylor-Couette flow becomes unstable &y ratio of the angular velocities of the inner and outer
cylinders. The instability, however, does not exist for both signs of the axial magnetidfjelBor positive
sheard()/dR the Hall instability exists for negative Hartmann number and for negative stieaR the Hall
instability exists for positive Hartmann number. For negative shear, of course, the Hall instability combines
with the magnetorotational instability, resulting in a rather complex bifurcation diagram. In this case the critical
magnetic Reynolds numbers with Hall effect are much lower than without Hall effect. In order to verify the
presented shear-Hall instability at the laboratory with experiments using liquid metals, one would need rather
large magnetic fields~10" G).
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[. INTRODUCTION If it is not too strong, the magnetic field can play a desta-
bilizing role and can lead to magnetorotational instability
The Taylor-Couette flow between concentric rotating cyl-(MRI). This MRI was discovered decades ago for Taylor-
inders(Fig. 1) is a classical problem of hydrodynamic and Couette flow[3,4], but its importance as the source of turbu-
hydromagnetic stability1,2]. Viscosity included and in the lence in accretion disks with differentiéeplerian rotation
absence of any tangential pressure gradient the most genevahs only recognized by Balbus and Hawlg). In the mo-
form of the angular velocity) of the flow is lecular hydrodynami¢MHD) regime the Rayleigh criterion
for stability, Eq.(4), changes to
b
Q(R)=a+ = (1) i>1 )
wherea andb are two constants related to the angular ve-for a weak magnetic field. The hydrodynamic Taylor-Couette
locities ();, and Q,,; with which the inner and outer cylin- flow is only stable if its angular momentum increases with
ders are rotating. WittR;, and R,,; (Ro,e>R;n) being the radius but the hydromagnetic Taylor-Couette flow is stable if

radii of the two cylinders one finds the angular velocity itself increases with radius. The MRI
decreases the critical Reynolds number for weak magnetic
w17 1-p field strengths for hydrodynamically unstable flow and it de-
2 o .
a=Qin1_—;72 and b:QinRinl_—;]zv (2)  stabilizes the hydrodynamically stable flow for
where B - 1|
) ) /j/j ]\ |
m=Qou/ Qi and  7=Riy/Roy. 3 \\\\\ //// Q..
According to the Rayleigh criterion the ideal flow is stable T |
whenever the specific angular momentum increases outwards i
d(R?Q)%/dR>0 or
n> 7. (4)
The viscosity, however, has a stabilizing effect so that a flow
with ,ZL< ;72 becomes unstable if the Reynolds number of the i —— //ch
inner rotation exceeds some critical value. O R T
L A
*Electronic address: gruediger@aip.de
TElectronic address: dasha.astro@mail.ioffe.ru FIG. 1. Cylinder geometry of the Taylor-Couette flow.
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) - oB
n <,LL<1 (6) E:rot (UXB)_,B rOt(rOt BXB)+ 77AB, (10)

There are very basic facts for the MRI. At first, MRI depends

only on the amplitude of the magnetic field and does notyith 5 as the magnetic diffusivity ang the Hall parameter
depend on its direction. At second, MRI exists in hydrody-which both are considered as uniform in the presented cal-
namically unstable situationsu %) only if the magnetic  culations. The electric field for which the induction equation
Prandtl number Pm is not very small as showfdhalready  (10) results is

and later in[6-9]; the critical Reynolds numbers vary as

1/Pm for hydrodynamically stable flows)f<u<1) [7,8],

so that it is the magnetic Reynolds number which directs the

instability. Pm is really very small for laboratory conditions

(10 ° and smaller. This is the main reason why the MRI has We have used the additional relations Bli¥0 and J

never been observed experimentally in the laboratory. =1/ug rot B. The Navier-Stokes equation is used in its stan-
The importance of the MRI for accretion disk physics anddard form, i.e.,

for planned new experimen$,10,1] highly stimulated the

theoretical investigation of the stability of the Taylor-Couette

flow [6—-12]. P
Here we are discussing the marginal stability of a fluid

with Hall effect. The influence of the Hall effect on MRIwas | gt = Rou— Ri, be the gap between the cylinders. We use

first discussed by Wardlgl3] and later by Balbus and Ter-

quem([14] and Sano and Stor{d5,16 in relation to accre- H=(R,d)2 (13)

tion physics. We mainly shall consider only axisymmetric

disturbances but in relation to the Cowling theorem of dy-a5 the unit of length, the velocity/H as the unit of the

namo theory also the nonaxisymmetric modes with1 are  perturbed velocityy/H? as the unit of frequencie8, as the

J
E=;—u><B+,3(rot BXB). (11

Ju
E—I—(U-V)U):—VP-FpVAU-i—JXB. (12

concerned. unit of the magnetic field fluctuations, ~* as the unit of the
wave number, anl;, as the unit of th&). The dimension-
. BASIC EQUATIONS less numbers of the problem are the magnetic Prandtl num-
R, ¢, andz are the cylindric coordinates. A viscous elec- ber
trically conducting incompressible fluid between two rotat- »
ing infinite cylinders in the presence of a uniform axial mag- Pm=—, (14)
netic field admits the basic solutiddg=U,=Bg=B,=0
and
wherev is the kinematic viscosity, Ha is the Hartmann num-
b ber, and Re is the Reynolds number of the inner rotation:
B,=Bgp=const, Ujg=aR+ R’ (7)
Hae —200 R QinH* (15)
. . . . . a: —_—, e: s
whereU is the velocity,B is the magnetic field, and andb W v

are given by Eqs2). We are interested in the stability of this

solution. The perturbed state of the flow is described by wherep is the density. We only consider marginal stability
/ / / / / , and stationary modes, i.es=0. Using the same symbols
Ur» RO+UG, Uzy Bry By, BotB;. ® for normalized quantities as before, the equations can be

The linear stability problem is considered in full generality Wtlen as a system of ten equations of first order, i.e.,

with nonaxisymmetric perturbations. By developing the dis-

turbances into normal modes, the solutions of the linearized %: _ %_iTu —iku (16)
. . . @ Z

MHD equations are considered in the form dR R R

uée:uR(R)ei(mdﬁkHwt), B}/?: BR(R)ei(m¢>+kz+wt), du¢, U¢

—=X,— =, 1
4 i(Mmp+kz+ wt) ’ i(m¢+kz+ wt) dR ’ R ( 7)
Ug=Uy(R)€E , Bg=By(R)e ,
) ) du
UQZUZ(R)G'(m(ﬁ-FkHwt), B;ZBZ(R)el(m¢+kZ+wt). (9) d_RZ:x?" (18)

The equations have been derived by Chandrasdiitgand

Roberts[18]. We use here only a different Ohm'’s law and dX, (m* . .m
different normalizations. dr EH( uR+|(w+mReQ)uR+2|§u¢

The general form of the induction equation with Hall ef-
fect is —2ReQu,—ikHaBg, (19
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with P as the pressure fluctuation. The influence of the Hall

effect is indicated by thq@ terms in Eqgs.(24) and (25).
Within the frame of the short-wave approximation, without
the induction of the flow field and for sma#l a local disper-
sion relation of the form

1
RM: — 2 40/dR (30
results with magnetic Reynolds number RiBm Re, indi-
cating that positive8 and negative sheat()/dR form the
same instability as negatiye and positive shead()/dR.

An appropriate set of ten boundary conditions is needed
to solve the systen(il6)—(25). It is easy to see that the Hall
effect leaves the boundary conditions used[& as un-
changed, i.e., the no-slip conditions for the velocity,

Ugr=U,=U,=0, (32
and for the magnetic field,
dB, B,

ﬁ+——o, Br=0, (32

for conducting walls. The boundary conditions are valid for
R=R;, and forR=R,. For insulating walls the magnetic
boundary conditions are differentBt= R, andR=R,, i.e.,

m
BR‘HW kR m(kR)+|m+1(kR)) (33)
for R=R;, and
B,

BR+| K_(kR) |k m(kR) Knt1(kR) |=0 (349
for R=R,, wherel,, andK,, are the modified Bessel func-
tions. With

m
By— ﬁBf 0, (35

the condition for the toroidal field is the same at both loca-
tions.

Ill. RESULTS

The numerical method is already described in our papers
[7] and[8]. Here only the results including the Hall effect are
presented.

A. Positive shear

In the present section an instability is described which
exists only in the presence of the Hall effect. It destabilizes

dX, [m? m
aR- ¥+k Ugti(o+mReQ)u,— 2|R Ug+2aReug
m? m
—|kHaZB¢+ 2 u¢+k 7~ ig Xy, (20
dXs [m? , X3 .
GR- §+k uz+|(w+mReQ)uZ—E—|kHaZBZ
m .
+k§ud,+k u,—ikXy, (21
9B __Br_Mp ks 22
drR R RBeT KB 22
dB, By
dr MR (23
48; _ 2+kB M 0+ MReN) Bt M
R '\ kr2 R (@t MREQ)Br+Ur— 1 =X4
.m .
—ipB,+iBkB,, (24)
dX4 m2 5 i .m
ﬁ: E-"_k B¢+IPI'T(w+de))B¢—2|EBR
. b . m? ., km
—|ku¢+2PmReR—ZBR+,8¥BR—,8 ?BZ
+B%k?B 4+i B(w+ mMReQ)PmBg—i Bkug
.m
+|,8§X4, (25
with
~ BBy
=—, 26
B . (26)
Introducing dimensionless quantities the latter can also be
written as
B= BoPm’?Ha, (27)
with
B Kop
Bo==—\] . (28
Rout ¥ 7(1-7)

The definitions ofX,, X3, and X, follow from Egs. (17),
(18), and(23) and theX; is given by

duR uR

X1= AR

—P—H&B,, (29

flows with 2> 1 (i.e., with positive sheadQ)/dR) for which
so far no other instability is known. Figures 2—4 illustrate the
instability for both conducting and nonconducting boundary

conditions for a container with a wide gap€0.5). The

flow is unstable but only for negative Hartmann number, i.e.,
if angular velocity and magnetic field have opposite direc-
tions. The result depends on the sign of the Hall resistiv-
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FIG. 4. The same as in Fig. 3 but for PmM0 5.

FIG. 2. The line of marginal stability for magnetic Taylor-
Couette flow with Hall effect §o=1) for 7=0.5, Pm=1 and for According to Eq.(2), the rotation law does not depend on
positivedQ)/dR: u=2 (solid line), 1.5(dashed ling and 1.2(dot-  the jnner angular velocit§);, for u>1 and the situation is
ted ling. Boundary conditiong32) for conductingcylinder walls. practically the same as if the inner cylinder were at rest. In
this case, the Reynolds number of the outer rotatiog,Res

ity; here the positive Hall resistivity is used. For negative !
y P y 9 the real parameter of the problem instead of Re:

Hall resistivity the orientation is opposite. The fact that Hall

effect destabilizes flows with the angular velocity increasing A 0. H2
outwards was already described by Balbus and Terquem Re,,=uRe= ot (36)
[14]. v

For small Hartmann number thg * behavior of Eq(30)
is confirmed and for strong magnetic fields the instability iswe have indeed numerically confirmed a behavior such as

suppressed. The minimum value of the Reynolds numbeg, «1/p for large . The value of Rg, corresponding to

already results for Hartmann r!umber_of order unity; 't_be'minimal Re (which is for Hartmann number of order unity
comes smaller and smaller for increasing sHeae the esti-

mate(30)]. Figure 4 demonstrates the validity of the relation
Rex1/Pm which is also indicated by the relati(80). Again
the Reynolds number takes its minima at such Hartmann Re=20. (37)
numbers that the Lundquist number *HaHa\/Pm is con-
stant.

Figures 2 and 3 demonstrate that the influence of th(?h
boundary conditions is not negligible what is quite charac-b
teristic for the magnetic Taylor-Couette probléeven in the
small-gap approximationas shown already by Nibleft.9]

In Fig. 5 the critical wave numbers are given for which

e Reynolds number is minimum for given Hartmann num-
er. The three curves represent the solutions with different
boundary conditions. The solid line stands for vacuum con-
o i ditions for both cylinders while the dashed line concerns
and later by R_d_|ger etal. [8]. In p_art|cular, fo_r vacuum yperfect-conductor solutions. If the outer boundary condition
boundary conqmgns the suppression of the instability b concerns the vacuum and if within the inner cylinder there is
strong magnetic fields is a rather weak effect compared W'ﬂé perfect conductor, then the dot-dashed line gives the wave
the magnetic suppression in a container with perfGCt'numbers. As expec,:ted the standard behavior can be ob-
conducting CY”T‘der walls. On_ce th_e Reyno_lds number EXserved; i.e., the wave ,number sinks for growing magnetic
ceeds the minimurm value given in the F'g'_ 3, then thefield so that the cells are elongated parallel to the magnetic
Taylor-Couette flow is unstable for a very wide range Offield lines. The vertical extension of one cell follows from
Hartmann numbers.

the relation
250
x 200
() x
2 0
L =
2 150f >
%]
3 g
3 100+ <
2 =
&
© sof 0 :
-10 -5 0
o HARTMANN NUMBER
—-10 -8 -6 -4 -2 0 FIG. 5. The dependence of the critical wave numbers on the

HARTMANN NUMBER g . - I
magnetic field for various boundary conditions: vacuum conditions

FIG. 3. The same as in Fig. 2 but for tacuumboundary (solid lineg, perfect-conductor conditioriglashed lines and mixed
conditions(33)—(35). Note the very weak influence of the magnetic conditions(vacuurlw outer cylinder, perfect conductor inner cylinder,
field on the onset of the instability. dot-dashed lings u=2.
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HARTMANN NUMBER symmetric fn=1, dotted ling¢ modes. Note the crossover of both

FIG. 6. The same as in Fig. 2 but for resting outer cylinder“nes'

(1=0, i.e., negativedQ/dR). B,=0 (dashed ling and B,=1

(solid ling). The dotted line is forBy=1, but foru=0 (velocity
fluctuations neglected, i.e., kinematic casthe minimum of the
dashed line indicates the Lorentz force-induced MRI.

already have discussed the appearance of nonaxisymmetric
modes for the magnetic Taylor-Couette flow with negative
shear. The common result was that the lines of marginal sta-
bility for m=0 andm=1 have a very different behavior for
s different electrical boundary conditiongl2]. One finds
z T A
= - (38)  crossovers of the stability lines fon=0 andm=1 for con-
RouRin  Keri tainers with conducting cylinder walls and one never finds
R such crossovers for containers with vacuum boundary condi-
(for »=0.5). For perfect-conducting cylinders, however, thetions. The same happens here for the shear-Hall instability
trend is opposite. For this case the vertical wave nurkggr for magnetic Taylor-Couette flows with positive shear, i.e.,

becomes very small for small Hartmann numbers. The reaﬁ>1, In Fig. 7 the lines for both axisymmetric and nonaxi-
son is that a solutioB,xR™* andBr=0 exists which ful-  symmetric modes are given for conducting boundary condi-
fills the boundary condition§32) and Eqs(16)—(25) for tions and in Fig. 8 they are given for vacuum boundary con-
=k=Ha=0. This current-free solution, however, is always ditions. The crossover of the lines only exists for conducting
marginal so that it cannot be excited if it does not exist at theyylinder walls. As usual, in the minimum the=0 mode
beginning. If one of the boundary conditions differs from Eq.dominates but for stronger magnetic fields the mode with
(32), then this solution cannot exist and the wave numbergn=1 dominates.

have their normal behavior as shown in Fig. 5.

V. DISCUSSION
B. Negative shear

The Hall effect al difies the critical R Id We have shown that the Hall effect destabilizes the mag-
€ nall etiect a1so m‘? fes the critica Aeyrloz S UM patic Taylor-Couette flow so that for any value of the param-
bers for both hydrodynamically unstable fiows ¢ ) and eter . a critical amplitude and one of the directions of the

for magnetﬁhydrody:’]amically uns”table ﬂ%\ﬁ‘{:r}) result- . magnetic field exist for which the flow is unstable.
ing in a rather complex situation illustrated with Fig. 6. The Ta e : . "

S : . ylor-Couette flows withu>1, i.e., with positive shear
Qashed line is the MR W'.t.hOUt Hall effect and the dotted IIr'edQ/dR, are stable in both hydrodynamic and traditional
is the shear-Hall instability with neglected flow perturba-,vIRI regimes. If, however, the Hall effect is included in the

;tilggi,irl].?:.i,gwghzl:]tirl\]/ISFtiell.billtit)l/sién;?;E:\:ntZ? t%%ugi?;f)f;:;;?légg induction e_quation, then even such a flqw t_)ecomes unstable

field as the. re.sult of a combination of shear and Hall effectunder the mfluence_ of an aX|aI. magnetic f|_e|d but only for

The combination of MRI and this shear-Hall instability is one of the two ppssmle orientations of the fleldi qu vacuum
boundary conditions and not too small magnetic fields there

ggegoﬁ;’s ijsboe“rdislmreoézclzelg.f(?r.véeglf Erzr?amr:gltirgl%lirgl dosf r;huec.s only a rather weak dependence of the critical Reynolds
y P g ' umber on the Hartmann numbgee Fig. 3.

deeper than the minimum resultmg without Hall effect. Or! The other magnetic orientation destabilizes all the flows
the other hand, for increasing Hartmann numbers the solid
line has a very weak slope so that the magnetic-field depen-
dence of the combined instabili§HMRI’ ) is rather weak as
already shown by Wardle[13]; see his Fig. 1c Again the

Hall effect is important for only one orientation of the mag-
netic field.

250
200

150

REYNOLDS NUMBER

IV. NONAXISYMMETRIC MODES o s o
It is also important to probe the existence of nonaxisym- HARTMANN NUMBER
metric modes. After the Cowling theorem only nonaxisym-  FIG. 8. The same as in Fig. 7 but for vacuum boundary condi-

metric modes can be maintained by a dynamo process. Wins. No crossover of both the lines exist.
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TABLE |. Astrophysical objectgprotoplanetary disks, pulsars AT T T T T
(NS), and white dwarf§WD)]: Hall coefficientuy8, magnetic dif-
fusivity, critical magnetic field after Eq41), and observed mag- _ 2r
netic field. 8
Object Hall coeff. (M/C) 5 (m%s) Bg (G) By (G) o
o —2F
WD 1020 10°° 10° 10 K
NS env. 10% 10713 101 10" -4t
NS core 102 1074 1012
Y L
-1 0 1 2
log,e R [AU]

with ©<1, i.e., with negativelQ)/dR (see Fig. 6. The lin-
earized induction equatiafi0) is invariant against the trans- FIG. 9. The magnetic constellation in accretion disks after Sano
formation and Stong[15]. Solid line: magnetic-field amplitude if magnetic
Mach number equals unity. Dashed line: magnetic-field amplitude if
By— —Bg, Upg— —Up, (39 Hall time scale equals magnetic dissipation decay time.

so that the simultaneous change of the signd@fdR and . o
B, leads to the same instability. After the splitting of the PY Sano and Storfd5]. The amplitude of the magnetic field
induction equation into poloidal and toroidal componentscomes from the condition that the magnetic Mach number
one finds the scheme equal 1. Above the lowest line the Hall effect dominates the
Ohmic dissipation and v.v. One finds that indeed the mag-
B B/ shear B - (40) netic field may be so strong that the Hall effect dominates the
tor Hall pol Hall tor» Ohmic dissipation. The critical magnetic field amplitude at
R=1 AU is about 0.1 G. Such high values can hardly be
hence also the shear must be changed if the Hall effect isnagined as due to a magnetized central object. Polar field
changed. If this is true, then the shear is necessary for thstrengths of order-10° G at the surface of a protosun are
existence of an instability. The shear appears as the energi¢eded in order to produce 0.1 G at a distance of 1 AU.
source of the instability. Magnetic fields with amplitudesfd G at 1 AU should
The magnetic field for an important influence of the Hall thys only be generated by the action dfarbuleni dynamo.
effect should be very high. The minimum value of the Rey-|n this case, however, we cannot use the molecular conduc-
nolds number for both positive and negative shear exists fofiyities to estimate the values of the parameters as it was
B~ 1. The corresponding value of the magnetic field is  done in[13-16. E.g., the turbulent magnetic diffusivity may
increase by several orders of magnitude. No considerations
Bo= Z‘ (41) of the effect of turbulence on the Hall diffusivity are known
B to us. This effect might be smaller than the influence on the
o ] . o magnetic diffusivity due to the linear dependence of the Hall
The Hall coefficient f1o/3 in our notation for liquid metals  gjffusivity on the magnetic field. If it is so, then the role of

is about 10'°m%/C, with »~10"' m*s and with o  the Hall effect for the weakly ionized protostellar accretion
=47x 107 for the magnetic fieldy=10" G is yielded. gisks might easily be overestimated.
This value is too high for the laboratory experiments.

We have another situation for astrophysical applications
[13-14. In Table | the Hall coefficients and the magnetic
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